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1. INTRODUCTION

1. One of T. Stieltjes' ([11], see also [1]) most celebrated results
establishes that the continued J-fraction
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z&b2&. . .

(1)

where an # R"[0] and bn # R, converges uniformly on each compact subset
contained in [J(z){0] to a holomorphic function if the determinate case
holds (for the definition see [13, p. 99], and point 3 in Section 2 below).
In this case, this is equivalent to saying that the associated infinite Jacobi
matrix

G=\
b0

a1

0
b

a1

b1

a2

b

0
a2

b2

b

} } }
} } }
} } }
. . .+ (2)

defines a unique selfadjoint operator, or that the corresponding moment
problem has a unique solution.

The concept of determinacy or indeterminacy applies as well to
J-fractions (1) such that an # C"[0] and bn # C. Our object is to see what
extension there is to Stieltjes' Theorem in this more general situation. The
spectral properties of the operator defined by G play a central role in the
description of the analytic properties of (1). This operator, which we
properly define in Section 2, will also be denoted by G. As usual, _(G)
(respectively _p(G) and _ess(G)) denotes the spectrum (respectively, the
point and essential spectrum) of G.

We shall prove that if the determinate case holds and

lim
n

J(an)=lim
n

J(bn)=0, (3)

then _p(G) consists of at most a denumerable set of isolated points in C"R.
Moreover, we shall prove the following: Assume that (3) takes place and

that the determinate case holds. Then, the continued fraction (1) converges
uniformly on each compact subset of C"(R _ _p(G)) to a holomorphic func-
tion with poles at each point of _p(G)"R.

As will be shown, each pole of (1) ``attracts'' a specific number of zeros
of the denominators of the corresponding partial fractions equal to the
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order of the pole. The rest of the zeros accumulate on R (for details see
Theorem 2 below).

When the coefficients of G are real and the determinate case takes place
then _(G)/R (G is selfadjoint). Thus _p(G)"R=< and we obtain
Stieltjes' Theorem.

The proof of Theorem 2, which is carried out in Section 4, makes use of
the asymptotic behavior of the zeros of polynomials satisfying three-term
recurrence relations with complex coefficients. This question, which is inter-
esting in itself, is studied in Section 3. We prove (see Theorem 1): Assume
that (3) takes place. Then, the zeros of the polynomials generated by the
three-term recurrence relation

Pn+1(z)=(z&bn) Pn(z)&a2
n Pn&1(z), n�0,

(4)
P&1(z)=0, P0(z)=1,

accumulate exclusively on R _ _p(G).
In Section 2, we introduce the notation and prove some auxiliary results.

2. AUXILIARY RESULTS

1. It is a well known fact (see [13, p. 197]) that there is a one to
one correspondence between J-fractions (1) with an # C"[0] and bn # C,
and formal power series expansions at infinity

f (z)= :
n�0

cn

zn+1 (5)

such that

hn= }
c0

c1

b
cn

c1

c2

b
cn+1

} } }
} } }

} } }

cn

cn+1

b
c2n

}{0, n�0. (6)

In the sequel, f represents both the J-fraction and the associated formal
power series.

The denominator Pn of the n th partial fraction

fn(z)=
a2

0

z&b0&
a2

1

z&b1&. . .&
a2

n&1

z&bn&1
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satisfies the recurrence relation (4) with the indicated initial conditions.
The numerator Qn satisfies the same recurrence relation but wit initial con-
ditions Q0(z)=0, Q1(z)=a2

0 . These polynomials are also characterized by:

(i) deg Pn�n, deg Qn�n&1, Pn �0,

(ii) (Pn f &Qn)(z)=An�zn+1+ } } } .

For the coefficients An , we have the formulas

An=a2
0a2

1 } } } a2
n=

hn

hn&1

, n�0, h&1=1. (7)

The sequence of rational functions [ fn] is also called the main diagonal of
the table of Pade� approximants associated with f. Thus, the results we are
about to establish may be stated as well for formal power series of type (5)
for which (6) takes place. The polynomials Pn and Qn are connected by the
relations

(Qn+1Pn&Pn+1Qn)(z)=An . (8)

These formulas, and others we shall use in the course of the paper, may be
found, for example, in Chapters I, IV, V, and XX of [13]. Since they are
well known (and easy to verify), we will use them without further reference.

2. Along with the sequences [Pn] and [Qn], we make use of the
so-called associated polynomials of type k. They are given by the
recurrence relations

P (k)
n+1(z)=(z&bn+k) P (k)

n (z)&a2
n+kP (k)

n&1(z), n�0,
(9)

P(k)
&1(z)=0, P (k)

0 (z)=1.

This is the sequence of monic polynomials associated with the infinite
tridiagonal matrix

G(k)=\
bk

ak+1

0
b

ak+1

bk+1

ak+2

b

0
ak+2

bk+2

b

} } }
} } }
} } }
. . .+ .

It is easy to check that Pn=P (0)
n and Qn=a2

0P (1)
n&1 . Thus

fn=a2
0

P (1)
n&1

P (0)
n

. (10)

180 BARRIOS ROLANI� A ET AL.



File: DISTL2 316505 . By:AK . Date:09:04:98 . Time:15:10 LOP8M. V8.B. Page 01:01
Codes: 2520 Signs: 1505 . Length: 45 pic 0 pts, 190 mm

Since a2
0 is a common factor for f and all fn there is no loss of generality

if we assume in the sequel that a0=1.
We also make use of the normalized associated polynomials. They are

given by the formula

p(k)
n (z)=

P (k)
n (z)

ak } } } ak+n
, n�0, (11)

and (9) can be rewritten in the following way

an+k+1 p (k)
n+1(z)=(z&bn+k) p (k)

n (z)&an+k p (k)
n&1(z), n�1,

(12)
p (k)

0 (z)=
1

ak
, p (k)

1 (z)=
z&bk

akak+1

.

This normalization slightly differs from the one adopted in [2, 3] but it
allows us to give several formulas a closer form. Analogously,

qn(z)=
Qn(z)

a0 } } } an
, n�0. (13)

In general, qn(z)=a0 p (1)
n&1 , n�1, but for a0=1 they are equal. From (7),

(8), and (13), we have

(qn+1 pn& pn+1qn)(z)=
1

an+1

, n�0. (14)

3. As pointed out in the Introduction a basic concept in the con-
vergence theory of continued fractions is that of determination.

Definition 1. The determinate case or the indeterminate case is said to
hold for the continued fraction (1) (or for G) when at least one of the
following two series diverges or both these series converge, respectively,

:
k�0

| pk(z)| 2, :
k�0

|qk(z)| 2,

at a given (fixed) point z of the complex plane.

A remarkable fact is the Theorem of Invariability (see Theorem 22.1 in
[13]) which states that if at a given point both these series converge then
at all points of the complex plane both converge. This theorem is what
makes Definition 1 consistent.

Since determination plays a central role in this paper, we wish to under-
line the following sufficient condition proposed as Exercise 5.1 in [13].
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Lemma 1. A sufficient condition for the determinate case to hold is that
there exist z # C and m # Z+ such that

:
n�0

| p (n+1)
m (z)|=�. (15)

In particular, this is true if either

:
n�0

1
|an+1 |

=� or :
n�0

|bn+1 |
|an+1an+2 |

=�. (16)

Proof. The basic relation is the following generalization of (14)

(qn+m+1 pn& pn+m+1qn)(z)= p (n+1)
m (z). (17)

The proof of (17) may be found in [12] (it is easy to verify by induction
on m, notice that for m=0 it reduces to (14)). The rest is a simple use of
(17) and the Cauchy�Schwarz inequality. Relation (16) readily follows
because

p (n+1)
0 (z)=

1
an+1

and p (n+1)
1 (z)=

z&bn+1

an+1 an+2

.

Thus we conclude the proof. K

4. Before proceeding let us take a closer look at (2). The infinite
matrix G defines, by the usual operation on a vector, an operator on the
linear subspace D0 of l 2 formed by all vectors which have only a finite
number of components different from zero. Along with D0 , we consider the
linear subspace of l 2 given by DG=[x� # l 2: Gx� # l 2]. DG is called the maxi-
mal domain of G. A real tridiagonal symmetric matrix H defines an
operator with a unique selfadjoint extension if it is a symmetric operator
on DH . For short, we say that H is selfadjoint. For real Jacobi matrices,
selfadjointness and determination are equivalent.

When we refer to the spectrum of G (or part of it), we are considering
G with domain DG . In particular, z # _p(G) if and only if there exists x� # l 2

such that Gx� =zx� . From the three-term recurrence relation, it is easy to
verify that

z # _p(G) � :
n�0

| pn(z)| 2<+�. (18)
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Lemma 2. Let k # N be given. The following statements are equivalent:

(i) G(k) is determinate.

(ii) _p(G(k)) & _p(G(k+1)){C.

(iii) _p(G(k)) & _p(G(k+1))=<.

(iv) G( j) is determinate for all j # N.

(v) �j�0 (_p(G( j)) & _p(G ( j+1)))=<.

(vi) �j�0 _p(G( j)){C.

Proof. The equivalence of (i) and (ii) is an immediate consequence of
the definition of determination and (18) (as applied to G(k)). In turn, that
(ii) implies (iii) follows from the Theorem of Invariability, while the
opposite implication is trivial.

In order to prove that (iv) follows from (i), we make use of the following
well known relation (see, e.g., [2] or [12]):

aj p ( j)
n (z)=(z&bj) p ( j+1)

n&1 (z)&aj+1 p ( j+2)
n&2 (z). (19)

Assume the contrary; that is, for some j # N, let G( j) be indeterminate.
Then, there exists z # C such that

:
n�0

| p ( j)
n (z)| 2<+�, :

n�0

| p ( j+1)
n (z)| 2<+�. (20)

Therefore, using (19) and (20) consecutively (for larger and smaller indexes
j), we obtain that for all j # N the corresponding series converge. In par-
ticular, this would occur for k and k+1 and G(k) would be indeterminate.
Obviously, (iv) implies (i).

Now, (iv) and (v) are equivalent because (i) is equivalent to (iii).
Obviously, (ii) implies (vi). On the other hand, (vi) implies that for some
j # N _p(G( j)) & _p(G( j+1)){C and using the equivalence of (i) with (ii)
and (iv), we obtain that G(k) is determinate. K

Let us study other properties of the operator G.

Lemma 3. Consider the following decomposition of G

G=H+C,

where H is a real tridiagonal symmetric matrix (not necessarily defining a
symmetric operator in DH). Then:
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(i) G admits such a decomposition, with C a bounded operator on l 2,
if and only if

sup
n�1

[ |J(an)|, |J(bn)|]<+�.

(ii) If C is bounded, then DG=DH .

(iii) If H is determinate, C is bounded, and z # _p(G), then

d(z, _(H))�&C&,

where d(z, _(H)) denotes the distance between z and _(H), and &C& the norm
of the operator C acting on l 2. In particular, G is determinate.

(iv) If H is determinate and C is bounded, then for any other decom-
position G=H1+C1 , where H1 is a real tridiagonal symmetric matrix and
C1 is bounded, H1 must be determinate.

(v) G admits such a decomposition, with C a compact operator on l 2,
if and only if (3) takes place.

(vi) If H is determinate and C is compact, then _ess(G)=_ess(H) and
_p(G)"_ess(H) consists of at most a denumerable set of isolated points in
C"_ess(H).

Proof. It is well known that a tridiagonal matrix defines a bounded
operator on l 2 if and only if all its entries are uniformly bounded, and a
compact one if and only if the diagonal entries tend to zero. Since
C=G&H, where G and H are tridiagonal, then C is tridiagonal. On the
other hand, H is real; therefore, the imaginary parts of the entries in C
equal the imaginary parts of the entries in G. Hence, C bounded implies
that the imaginary parts of the entries of G must be uniformly bounded,
and C compact implies (3). The reciprocal statements in (i) and (v) are
easy to deduce choosing H conveniently. It is even possible to construct H
so that all its entries in the lower and upper diagonals are different from
zero (as in G).

The assertion in (ii) is obvious because Cx� # l 2 for all x� # l 2. In order to
prove (iv), notice that H1=H+C&C1 . Therefore, DG=DH=DH1

. Since
H is a real, determinate J-matrix, the operator it defines is symmetric on
DH=DH1

. On the other hand, C&C1 is real and bounded; therefore, it
defines a symmetric operator on l 2

#DH1
. Therefore, H1 defines a real sym-

metric operator on its maximal domain DH1
and thus H1 is determinate.

The statements in (vi) follow from Weyl's Theorem on compact perturba-
tion of selfadjoint operators (see [6]).

In order to prove (iii), take z # _p(G). If z # _(H) the inequality is trivial.
Thus, assume that z � _(H). Hence, (H&zI )&1 is a bounded operator on
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l 2 and &(H&zI )&1&=1�d(z, _(H)). Take an eigenvector x� of norm one
corresponding to the eigenvalue z. We have

0=(G&zI ) x� =(H&zI ) x� +Cx� ,

or what is the same,

x� =&(H&zI)&1 Cx� .

Taking norms on either side, we obtain

1�&(H&zI )&1& &C&=
&C&

d(z, _(H))
,

which is equivalent to the inequality we needed to prove. The final asser-
tion in (iii) is immediate because _(H) is contained in the real line; there-
fore, (ii) in Lemma 2 takes place for k=0. K

It would be nice to have a reciprocal of (iii). Some sufficient conditions
are easy to prove.

Lemma 4. Let G=H+C, where H is a real symmetric tridiagonal
matrix, C is bounded, and G is determinate. Then H is determinate if any one
of the following conditions take place:

(i) Those in (16).

(ii) supn�1 |bn |<+�.

(iii) an # R"[0].

Proof. Without loss of generality, we can assume that R(an)�0,
because in the construction of the monic polynomials Pn and Qn the coef-
ficients an appear to the square in the three-term recurrence relation. From
(iv) of Lemma 3, it is sufficient to show that the lemma is true for a con-
venient decomposition of G. We do this taking H1 with entries ;n=R(bn)
on the main diagonal and :n=|an | on the upper and lower diagonals.
From the assumptions (see (i) in Lemma 3), we know that the imaginary
parts of an and bn are uniformly bounded. It is easy to deduce that the
entries of C1=G&H1 are uniformly bounded.

Assume that (i) takes place. If

:
n�0

1
|an+1 |

=�,
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then H1 is determinate. In particular, this settles the problem if there is a
subsequence of [an] which is bounded. Therefore, we may restrict our
attention to the case when limn |an |=�, �n�0 1�|an+1 |<�, and

:
n�0

|bn |
|anan+1 |

=�.

From these conditions it immediately follows that

:$ |bn |
|anan+1 |

=�,

where �$ stands for the sum taken over those indexes n such that
|R(bn)|�|J(bn)|. In fact, the contrary would imply that

:
n�0

|bn |
|anan+1 |

�2c1 :
n�0

1
|an+1 |

+:$ |bn |
|anan+1 |

<�,

where c1=supn |J(bn)|�infn |an |. Therefore,

�=:$ |bn |
|an an+1 |

�2 :
n�0

|Rbn |
|anan+1 |

,

which implies that H1 is determinate.
Conditions (ii) and (iii) imply that H1 is determinate by use of the

Theorem of Invariability (see [13, p. 96]) after carrying out equivalence
transformations of the continued fraction in order to substitute a2

n by
|a2

n |. K

Remark 1. It may be proved that condition (15) on G is sufficient to
guarantee that H is determinate.

5. Another important concept in the theory of continued fractions
is that of positive definiteness. For the proper definition, we refer the reader
to [13, p. 67]. We state the following equivalent form (see Corollary 16.2
in [13]).

Definition 2. The J-fraction (1) is positive definite if, and only if,

(a) ;n=J(bn)�0, n # N.

(b) there exist numbers g0 , g1 , ..., such that 0�gn&1�1 and

:2
n�;n ;n+1(1& gn&1) gn , n # N,

where :n=Jan .

The following lemma is a consequence of Theorem 25.4 in [13].
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Lemma 5. Let d>0. Assume that G is determinate and

sup
n�0

[ |J(bn)|, 2 |J(an+1)|]�d.

Then,

lim
n

fn= f, [ |J(z)|>2d], (21)

uniformly on each compact subset of the indicated region.

Proof. First, let us concentrate on the set [J(z)>2d]. In place of (1),
consider the J-fraction

a2
0

z$&(b0&2d )&
a2

1

z$&(b1&2d )&
a2

2

z$&(b2&2d )&. . .

(22)

where z$=z&2d.
With respect to z$, (22) is positive definite. In fact,

J(bn&2d )�&d<0, n # N,

and taking gn= 1
2 , we have

(J(an))2�
d 2

4
�J(bn&2d ) J(bn+1&2d )(1& gn&1) gn , n # N.

On the other hand, by the Theorem of Invariability, the J-fraction (22) is
determinate.

Therefore, Theorem 25.4 in [13] asserts that (22) converges uniformly
on each compact subset of [J(z$)>0] to a holomorphic function. That is
to say that our initial J-fraction (1) satisfies (21) in [J(z)>2d].

For the lower part, notice that the continued fraction

1

z&b� 0&
a� 2

1

z&b� 1&. . .&
a� 2

n

z&b� n
&. . .
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also satisfies the conditions of the theorem regarding the sequences of its
coefficients [b� n] and [a� n]. It is easy to see that the corresponding partial
fractions f *n are linked with those of fn by the formula

f n*(z� )=fn(z), n�0,

and we only have to use the result we have just proved for the upper half
to the sequence [ f n*]. K

3. LOCATION OF ZEROS

1. Let

P(G)=[z: _4/N, Pn(zn)=0, \n # 4, z=lim
n # 4

zn].

In the sequel, H always represents a real, tridiagonal, symmetric matrix. By
Favard's Theorem, the polynomials generated by the three-term recurrence
relation associated with H are orthogonal with respect to some measure
+H , whose support, supp +H , is contained in the real line. This measure is
not uniquely determined, unless H is determinate. By +H , we denote any
particular solution. We have:

Theorem 1. Assume that G admits a decomposition G=H+C, where C
is bounded. Denote

A= ,
H=G&C, C bounded

[z: d(z, conv(supp +H))�inf
k

&C (k)&],

where conv(supp +H) denotes the convex hull of the indicated set. Then

P(G)/_p(G) _ A.

Proof. If G is indeterminate, then _p(G)=C (see Lemma 2) and the
statement is trivial. Therefore, the main interest is when G is determinate.

Let z # P(G) and take 4/N such that

z=lim
n # 4

zn ,

where Pn(zn)=0 for all n # 4; define

wn=( p0(zn), p1(zn), ..., pn&1(zn), 0, 0, ...) # l 2.
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For

L=lim
n # 4

&wn&, (23)

we can consider two cases:

(i) L<�. Then the sequence [wn]n # 4 is uniformly bounded and
there exists a weakly convergent subsequence [wn]n # 4$ , 4$/4 (see, e.g.,
[5]). Denote by w # l 2 its weak limit; since each component pi (zn) of wn,
n # 4$, converges to pi (z), it follows that w=( p0(z), p1(z), ...) # l 2. Then
(12) (for k=0) gives us (G&zI ) w=0, w{0, which implies that z # _p(G).

(ii) L=�. Then, there exists 4$/4 such that

lim
n # 4$

&wn&=�. (24)

Given n # 4 and k # N, 1�k�n&1, define

wk, n=( p (k+1)
n&k&1(zn), p (k+2)

n&k&2(zn), ..., p (n)
0 (zn)) # Cn&k.

Making use of the relations

ak p (k)
n (z)=(z&bk) p (k+1)

n&1 (z)&ak+1 p (k+2)
n&2 (z) (25)

(see [12]), it is easy to verify that

(G (k)
n&k&zn In&k) wk, n=&ak p (k)

n&k(zn) e0
n&k ,

where G (k)
n&k is the principal section of order n&k of G(k), In&k is the iden-

tity matrix of order n&k, and e0
n&k is the n&k dimensional vector with 1

on its first component and the rest equal to zero. Taking

uk, n=
wk, n

&wk, n&
,

where

&wk, n&=\ :
n&k

j=1

| p (n& j+1)
j&1 (zn)| 2+

1�2

,

we arrive at

(G (k)
n&k&zn In&k) uk, n=

&ak p (k)
n&k(zn)

(�n&k
j=1 | p (n& j+1)

j&1 (zn)| 2)1�2 e0
n&k . (26)
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In [2, Lemma 3], the following equation was established

pn& j (zn)=an p (n& j+1)
j&1 (zn) pn&1(zn), j=1, ..., n (27)

(recall that here the associated polynomials are normalized differently than
in [2]). In particular, for j=n&k+1, we obtain

p (k)
n&k(zn)=

pk&1(zn)
an pn&1(zn)

. (28)

Using (27) and (28) in (26), we have

&(G (k)
n&k&zn I ) uk, n&2=

|ak pk&1(zn)|2

�n&1
j=k | pj (zn)| 2 .

Taking the limit n � �, n # 4$, and considering (24), we conclude that

lim
n # 4$

&(G (k)
n&k&znI ) uk, n&=0.

Moreover, for each n # 4$, we have &uk, n&=1; therefore,

&(G (k)
n&k&zI) uk, n&�&(G (k)

n&k&znI ) uk, n&+|z&zn |,

and

lim
n # 4$

&(G (k)
n&k&zI) uk, n&=0. (29)

Consider any decomposition of G of the form G=H+C, where C is
bounded. Take G (k)

n&k=H (k)
n&k+C (k)

n&k (where H (k)
n&k , C (k)

n&k are the principal
sections of order n&k of H (k) and C (k), respectively). Then

(H (k)
n&k&zI ) uk, n=(G (k)

n&k&zI ) uk, n&C (k)
n&k uk, n.

In case that z � _(H (k)
n&k) (=_p(H (k)

n&k)), we may apply (H (k)
n&k&zI )&1 to

both sides of the previous equation and obtain

uk, n=(H (k)
n&k&zI )&1 [(G (k)

n&k&zI )&C (k)
n&k] uk, n.

Thus,

1�&(H (k)
n&k&zI )&1& [&(G (k)

n&k&zI ) uk, n&+&C (k)
n&k &]. (30)

Since H (k)
n&k is a finite real symmetric matrix, we have that

d(z, _(H (k)
n&k))=

1
&(H (k)

n&k&zI )&1&
.
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Therefore, from (30) we obtain

d(z, _(H (k)
n&k))�&(G (k)

n&k&zI ) uk, n&+&C (k)
n&k &. (31)

If z # _(H (k)
n&k), then (31) evidently holds true.

Using (29), the well-known fact that

lim
n � �

&C (k)
n&k&=&C (k)&,

and taking limits in (31), we have

lim
n # 4$

d(z, _(H (k)
n&k))�&C (k)&, \k.

From this inequality it is easy to conclude the proof. In fact, _(H (k)
n&k)

coincides with the set of zeros of the associated polynomial of type k and
degree n&k relative to H. It is well known that these zeros all lie in
conv(supp +H). Therefore,

d(z, conv(supp +H))�d(z, _(H (k)
n&k)),

and from the limit above, we obtain

d(z, conv(supp +H))�&C (k)&, \k.

Now, it is sufficient to take inf on k in order to conclude the proof. K

Of special interest is the following

Corollary 1. Let G=H+C, where C is compact. Then

P(G)�_p(G) _ conv(supp +H).

Proof. Since C is compact, then

lim
n � �

&C (k)&=0,

and the result is immediate from Theorem 1. K

4. CONVERGENCE OF CONTINUED FRACTIONS

1. Now, we can prove the extension of Stieltjes' Theorem. Before
stating the result, we will introduce some more notation.
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Along with the continued fraction (1), which we denoted by f (z), we will
consider the continued fractions

f (k)(z)=
1

z&bk&
a2

k+1

z&bk+1&. . .&
a2

k+n

z&bk+n
&. . .

The corresponding n th partial fraction is

f (k)
n (z)=

1

z&bk&
a2

k+1

z&bk+1&. . .&
a2

k+n&1

z&bk+n&1

Notice that

f (k)
n (z)=

P (k+1)
n&1 (z)
P (k)

n (z)
. (32)

2. Fix ` # C and let [zn&i], i=1, ..., n, be the set of zeros of Pn .
Assume that they are indexed so that

|zn, 1&`|�|zn, 2&`|� } } } �|zn, n&`|.

Definition 3. Let ` # C. We denote by *
�
(`) the number j # N such that

�
n

|zn, j&`|=0 and �
n

|zn, j+1&`|>0.

If � n |zn, 1&`|>0, we take *
�
(`)=0. On the other hand, if � n |zn, j&`|

=0 for all j # N, then *
�
(`)=+�.

For `=� (here, |zn, n |�|zn, n+1 |� } } } �|zn, 1 | ), *
�
(`) equals j # N if

lim
n

|zn, j |=+� and lim
n

|zn, j+1 |<+�.

When limn |zn, j |=+� for all j # N then *
�
(�)=+� and *

�
(�)=0 if

limn |zn, 1 |<+�.

A similar characteristic was introduced by A. A. Gonchar in [9].
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Definition 4. Given ` # C, we denote *(`) the number j # N such that

lim
n

|zn, j&`|=0 and lim
n

|zn, j+1&`|>0.

If limn |zn, 1&`|>0 then *(`)=0. In case that limn |zn, j&`|=0 for all
j # N, then *(`)=+�.

For `=�, *(`) equals j # N if

lim
n

|zn, j |=+� and �
n

|zn, j+1 |<+�.

When limn |zn, j |=+� for all j # N, then *(�)=+�. If � n |zn, 1 |
<+�, then *(�)=0.

Obviously, *(`)�*
�
(`) for each fixed ` # C� . If [zn, i], i=1, ..., n, denotes

the set of zeros of P (1)
n , we define similarly *

�
(1)(`) and * (1)(`), respectively.

Another important index is }(Pn , U) (see [7, 8]).

Definition 5. Let U be an open set of the extended complex plane. By
}(Pn , U), we denote the number of zeros of Pn contained in U.

These indices play an important role in the study of the so-called inverse
problems in the theory of Pade� approximants. For a review on the subject,
see [10] and also the references above. Here, they are used to describe the
connection between the asymptotic distribution of the zeros of [Pn],
n # Z+ , and the poles of f (z).

We also define }(`) as follows:

Definition 6. Assume that f is meromorphic on a certain region D,
and ` # D. Then }(`)=m if ` is a zero of multiplicity m. If ` is a pole of
order p, then }(`)=&p. Otherwise, }(`)=0.

3. We are ready for the proof of

Theorem 2. Assume that G is determinate, G=H+C, and C is com-
pact. Then, _p(G)"R consists of at most a denumerable set of isolated points
in [ |J(z)|{0] and

_p(G)"R=P(G)"R.

The continued fraction (1) converges uniformly on each compact subset of
[ |J(z)|{0]"_p(G) to a holomorphic function which is meromorphic in
[ |J(z)|{0]. Moreover, we have:
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(i) For ` # _p(G(1))"R, there exist \>0 and n1(\) such that

}(Qn , D\(`))=*
�

(1)(`)=*(1)(`)=}(`)�1, n�n1(\), (33)

where D\(`)=[z: |z&`|<\].

(ii) For ` # _p(G)"R, there exist \>0 and n2(\) such that

&}(Pn , D\(`))=&*
�
(`)=&*(`)=}(`)� &1, n�n2(\). (34)

Proof. Let d>0. Choose and fix an integer k�0 such that

sup
n�0

[ |J(bk+n)|, 2 |J(ak+n+1)|]�d.

This is possible because C is a compact operator (see (v) in Lemma 3).
By use of Lemma 5, we obtain that

f (k)
n (z) w�w�

n
f (k)(z), [ |J(z)|>2d], (35)

where f (k) is holomorphic in [ |J(z)|>2d]. Notice that (see [13, p. 15])

f k+n(z)=
a2

0

z&b0&
a2

1

z&b1&. . .&
a2

k&1

z&bk&1&a2
k f (k)

n (z)

=
Qk(z)&a2

kQk&1(z) f (k)
n (z)

Pk(z)&a2
kPk&1(z) f (k)

n (z)
=

Qk+n(z)
Pk+n(z)

. (36)

From (35), we obtain that

Pk(z)&a2
kPk&1(z) f (k)

n (z) w�w�
n

Pk(z)&a2
k Pk&1(z) f (k)(z) (37)

and

Qk(z)&a2
k Qk&1(z) f (k)

n (z) w�w�
n

Qk(z)&a2
k Qk&1(z) f (k)(z), (38)

uniformly on each compact subset of [ |J(z)|>2d]. The functions

Pk(z)&a2
kPk&1(z) f (k)(z) and Qk(z)&a2

kQk&1(z) f (k)(z)

are holomorphic in [ |J(z)|>2d].
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Using (36)�(38), we have that [ fn], n�0, converges uniformly on each
compact subset of [ |J(z)|>2d] & [Pk(z)&a2

k Pk&1(z) f (k)(z){0] to the
holomorphic function

f (z)=
Qk(z)&a2

k Qk&1(z) f (k)(z)
Pk(z)&a2

kPk&1(z) f (k)(z)
. (39)

Let 0(d ) be the largest open set contained in [ |J(z)|>2d] where [ fn],
n�0, converges uniformly on each compact subset.

We have that

0(d )#[ |J(z)|>2d] & [Pk(z)&a2
k Pk&1(z) f (k)(z){0].

Let us show that 0(d ) equals [ |J(z)|>2d] except for a denumerable set
of isolated points. Obviously, it is sufficient to prove that [Pk(z)&a2

kPk&1

(z) f (k)(z)=0] consists of isolated points in C.
Assume that for some z0 # C

Pk(z0)&a2
kPk&1(z0) f (k)(z0)=0.

We have that Pk&1 {0, because Pk and Pk&1 may not have common zeros
(see (7) and (8)). Then

f (k)(z0)=
Pk(z0)

a2
kPk&1(z0)

.

Therefore, if z0 is not an isolated zero, we have that

f (k)(z)#Pk(z)�a2
kPk&1(z)

is a rational function. This is not possible because by Kronecker's Theorem
(for example, see Theorem 51.2 in [13]) that would imply that for all
sufficiently large n the Hankel determinants h (k)

n corresponding to f (k)

would have to be zero, which is not the case because aj {0, for all j # N
(see Subsection 2.1, in particular (7), as regards to the continued fraction
f (k)).

Let us prove that

0(d )/[ |J(z)|>2d]"_p(G)/[ |J(z)|>2d]"P(G).

The second set is contained in the third because of Corollary 1. Let z0

belong to the first set. Then,

lim
n

qn(z0)
pn(z0)

= f (z0) # C.
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If z0 # _p(G), from this limit, one immediately obtains that z0 # _p(G(1))
which is absurd because G is determinate (see Lemma 2). Therefore, the
first set is contained in the second. In particular, we have that the sets
_p(G)"[ |J(z)|>2d] and P(G)"[ |J(z)|>2d] consist of isolated points.

Now, let us prove that

[ |J(z)|>2d]"P(G)/0(d ).

Let z0 # [ |J(z)|>2d]"P(G). Since P(G)"[ |J(z)|>2d] and the subset of
[ |J(z)|>2d] where the continued fraction diverges only have isolated
points, we can find \>0 sufficiently small such that for all sufficiently large
n, the disk D\(z0) contains no zeros of pn and the sequence [ fn], n�0 con-
verges uniformly on the boundary of this disk. But then, by the maximum
principle of analytic functions, we have uniform convergence in all D\(z0).
Thus, z0 # 0(d ) as we claimed.

We conclude that

0(d )=[ |J(z)|>2d]"_p(G)=[ |J(z)|>2d]"P(G).

Since d>0 may be taken arbitrarily small, it follows that

_p(G)"R=P(G)"R,

_p(G)"R consists of isolated points in [ |J(z)|{0], and

fn(z) w�w�
n

f (z), [ |J(z)|{0]"_p(G),

where f (z) is holomorphic in [ |J(z)|{0]"_p(G). In [ |J(z)|{0], f is
meromorphic because in a reduced neighborhood of each point in _p(G)"R
it is expressed as the quotient of two holomorphic functions (see (39) for
k sufficiently large).

We have proved all the initial statements of the theorem. Before proceed-
ing we wish to make two remarks. The first is that the zeros of f must be
isolated points in [ |F(z)|{0]. The contrary would lead to a contradiction
using again Kronecker's Theorem. The second is that, for all j # N, _p(G( j))
"R consists solely of isolated points and

_p(G( j))"R=P(G( j))"R.

This is a consequence of what we have just proved considering the con-
tinued fraction f ( j) in place of f (see (iv) in Lemma 2). We are especially
interested in the second remark for j=1.

Fix ` # [ |J(z)|{0]. From what we have proved so far, we can find \>0
sufficiently small with the following properties: the set D\(`)"[`] contains
no points belonging to _p(G) _ _p(G(1)) _ R and has no zero or pole of f.
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If \ satisfies the properties above, so does any \$ such that 0<\$�\. Fix
\ with the specified property. Now, we can find n0(\) such that for
n�n0(\) the circumference C\(`)=[ |z&`|=\] does not contain zeros of
Pn or Qn .

From the uniform convergence of [ fn], n�0, on C\(`), we obtain

lim
n |

C\(`)

f $n(z)
fn(z)

dz=|
C\(`)

f $(z)
f (z)

dz.

By the argument principle, and the fact that the integrals on which we are
taking limit represent integers, we obtain that for all n�n$0(\)�n0(\)

}(Qn , D\(`))&}(Pn , D\(`))=}(`). (40)

From Lemma 2, we know that _p(G(1)) & _p(G)=<. Therefore, if
` # _p(G(1))"R, then for all n�n1(\)�n$0(\), we have that }(Pn , D\(`))=0.
Therefore, (40) states that

}(Qn , D\(`))=}(`), n�n1(\).

Since the same is true for all \$ such that 0<\$<\, we conclude that

}(Qn , D\(`))=*
�

(1)(`)=* (1)(`)=}(`), n�n1(\).

For (33) it remains to prove that }(`)�1. This immediately follows from
the fact that

_p(G(1))"R=P(G(1))"R.

By Lemma 2 again, if ` # _p(G)"R, then for all n�n2(\)�n$0(\), we
obtain that }(Qn , D\(`))=0 and (40) reduces to

&}(Pn , D\(`))=}(`), n�n1(\).

Since the same is true for all \$ such that 0<\$<\, then we have that

&}(Pn , D\(`))=&*
�
(`)=&*(`)=}(`), n�n2(\).

In order to complete (34), we must prove that }(`)�&1 for ` # _p(G)"R.
This is a consequence of the equality

_p(G)"R=P(G)"R.

With this we conclude the proof of Theorem 2. K
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4. We wish to underline some consequences of Theorem 2.

Corollary 2. Assume that (3) and (15) hold. Then the theses of
Theorem 2 are valid.

Proof. Using (v) from Lemma 3, we have that G=H+C, where H is
a real tridiagonal symmetric matrix and C is compact. From Lemma 1, we
know that G is determinate. Therefore, we have the conditions required in
Theorem 2. K

Of special interest for its practical expression is the following particular
case of Corollary 2.

Corollary 3. Assume that (3) and (16) hold. Then the theses of
Theorem 2 are valid.

Proof. As noted in Lemma 1, (16) implies (15). Thus, the conditions of
Corollary 2 are fulfilled. K

We wish to conclude this list of applications of Theorem 2 with the
following extension of Markov's Theorem on the convergence of continued
fractions (Pade� approximants of Markov-type functions).

Corollary 4. Assume that supn |an |�M<+� and (3) takes place.
Then the theses of Theorem 2 hold.

Proof. It is obvious that in this situation �n 1�|an |=� and we may
use Corollary 3. K

Markov's Theorem refers to continued fractions corresponding to the
Cauchy transform of a positive Borel measure supported on a finite inter-
val of the real line. In this case, it is easy to prove that 0<an�M and
&M�bn�M, where M is a positive constant independent of n.

By means of equivalence transformations, we can obtain an analogue of
Theorem 2 for S-fractions. To see how this is done and the type of result
which may be obtained we refer the reader to Corollaries 4 and 5 of [2].

Remark 2. We wish to point out that in (34) (respectively (33)) }(`)
equals minus the algebraic multiplicity of ` as an eigenvalue of G (respec-
tively the algebraic multiplicity of ` as an eigenvalue of G(1)). The proof of
these statements is contained in a forthcoming paper (see [4]) where we
study the analogue of the results above for general band matrices.
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5. To conclude, we will state a generalization of Theorem 2.

Theorem 3. Let G be determinate. Suppose that there exist b # C and
% # [0, �) such that

lim
n � �

J([bn&b] e@%)=0, lim
n � �

J(anei%)=0.

Denote by l the straight line of the complex plane defined by

l=[z : (z&b) e@% # R].

Then, _p(G)"l consists of at most a denumerable set of isolated points in C"l
and

_p(G)"l=P(G)"l.

The continued fraction (1) converges uniformly on each compact subset of
C"(_p(G) _ l ) to a holomorphic function which is meromorphic in C"l.
Moreover, we have

(i) For ` # _p(G(1))"l, there exist \>0 and n1(\) such that

}(Qn , D\(`))=*
�

(1)(`)=*(1)(`)=}(`)�1, n�n1(\), (41)

where D\(`)=[z : |z&`|<\].

(ii) For ` # _p(G)"l, there exist \>0 and n2(\) such that

&}(Pn , D\(`))=&*
�
(`)=&*(`)=}(`)� &1, n�n2(\). (42)

Proof. We will not go into detail in the proof because though the state-
ment is more general than that of Theorem 2 in fact these two results are
equivalent. This is due to the fact that J-fractions (diagonal Pade�
approximants), the point spectrum of a Jacobi matrix (as well as the other
components of its spectrum), and determinacy are invariant under an affine
transformation. For more details on how to carry on, we refer the reader
to Subsection 3.2 of [2] and Subsection 2.1 of [3]. K

6. We express our gratitude to a referee who pointed out that
Lemma 5 could be deduced from Theorem 25.4 in [13] as we have done
in fact. That, and calling our attention indirectly to the notion of deter-
minacy of a continued fraction, has resulted in a considerable improvement
of the paper. Initially, we had only considered compact perturbations of
selfadjoint operators. In this regard, we proved (see Lemma 4 and
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Remark 1) that for a wide class of Jacobi matrices, if G is determinate then
so is H. We think that this is always the case whenever G=H+C with C
bounded.
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